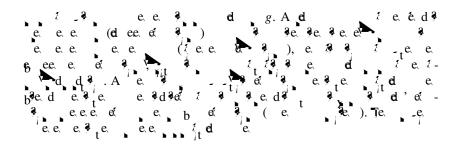
e. 3 d i de i se sis (d, 2,), e, e, e, e, e, e,

2.1 Vertex Features



2. Ita P. d. b., Ita, a

3 OUTCOMES ON NETWORKS

Proposition 1 If < 1, + = 0, $W_{ij} = (N-1)^{-1}$ if i = j and $W_{ii} = 0$, (, ,) is not point-identified.

e e d M

 $y_i = + \mathbb{E}(y_i \ W) + x_i + \mathbb{E}(x_i \ W) + i, \mathbb{E}(x_i \ W) + i,$

 x_i . A e. d t b M3 (1993) 3 d t e. e. e. e. d t 13 e. e. 1 d e. d ď W (. . 535). Te e, e, , e e e ee e, e, e, ed_be_d de de 🦸 d e. $\mathbb{E}(x_j | w)) = 0, e \quad 3 \text{ d}$ 31 e, e, d **d** (2) le de de l, e a .I e.e. ₃e.¹ $(x) = {}^{2}I, e$ $^{2}(\mathbf{I} - W)^{-2}$

The distribution of the control of

Proposition 2 If < 1, $W_{ij} = (N-1)^{-1}$ if i = j, $W_{ii} = 0$, and $\mathbb{V}(\mathbf{x}) = {}^{2}\mathbf{I}$ then (,,,) is point-identified.

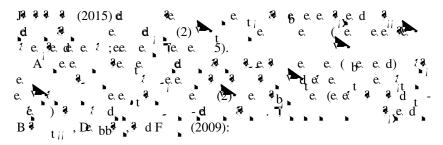
, e, 1 3 3 et e, ³_b e√ I e, e, be& le ê e d³ d e_{λ} a d, _t e e %e d. (O ℓ_t e, de le e l _e, e, d. 3 11 -1. Te b t e 31 bt deē e' e 133ee þ. d ¹² C **3 3 e** e. a e ae. d e. e. t e. e, _e, e, e. 1 e. e, e i e i e d b P 3 3 d 1 ,e. '**d** e e $\frac{e}{b}$ $\frac{d}{d} = 0.50$.

Proposition 3 If < 1, $W_{ij} = (N-1)^{-1}$ if i = j, $W_{ii} = 0$, and $\mathbb{V}(\mathbf{x}) = {}^{2}\mathbf{I}$ then

$$\frac{\mathbb{C}(y_i, y_j \mathbf{x})}{\mathbb{V}(y_i \mathbf{x})} > \frac{4 - 3N}{4N^2 - 11N + 8}.$$

 $\mathbf{y}_{l \ N_{l} \ 1} = W_{l \ N_{l} \ N_{l} \ l \ N_{l} \ 1} + {}_{l} \mathbf{1}_{N_{l} \ 1} + {}_{l \ N_{l} \ 1},$

e.e. N_l e. g. d. d. d. t - l. $W_{ij,l} = (N_l - 1)^{-1}$ i = j d. $W_{ii,l} = 0$, d. d. t - e. t l. e. d. t e. t e



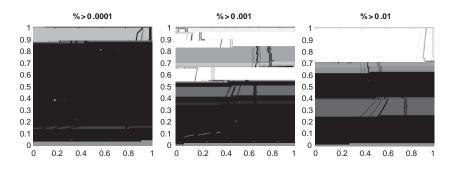
Proposition 4 (B ? , D. bb² , d F , 2009) If + = 0 and I, W, W^2 are linearly independent, (, , ,) is point-identified.

I
$$W_{ij} = (N-1)^{-1}$$
 $i = j$ 3 d $W_{ii} = 0$, $W^2 = (N-1)^{-1}$ **I** +

F_te 1 De é dC é N

e.e. Te. W^2 , W^2

JT e d é d e (e E e d b B d d H d t d d K (2014), d K d e t e t b d 't - - d d 3 ...) T e d e d (M O) 1 t t t d , 2 d 2 d ₹ 3 3e. . Te. 3 e. b3 $\mathbf{d}_{\mathbf{k}}$ xt e lagged ! Te e, y_{it} e b te. t e d b Ma e 3 (2013) e, = I + W (1 3e $t e^{t} e^{t} = 0$ = 0 (? M? e. ?, 2013), = 0 (? M? e. ?, 2013), = 0 (? M? e. ?, 2013), = 0 (? M? e. ?, 2013),e - 3 d d d 3 - e d e 1 .24 a d e_{c} e_{c} $= \mathbf{I} + \mathbf{W} \mathbf{e}$



The end of the end of

$$\mathbf{v}_{t}(W_{t+1}, t) \frac{1}{T} \sum_{t} \|\mathbf{y}_{t} - \mathbf{w}_{t} - \mathbf{w}_{t} - \mathbf{x}_{t} - \mathbf{w}_{t}\|_{2}^{2} + \sum_{i=j} p_{T}(W_{ij}),$$
(6)

3.2 Nonlinearities and Multiple Equilibria

 $\mathbf{d}_{\mathbf{k}}$, $\mathbf{b}_{\mathbf{k}}$ \mathbf{e} , \mathbf{e} ,

d is de tild ete tiee.

4 NETWORK FORMATION

A ea ${}^{3}b$ e, e 1 e 1 e e e d 3 e e e d 3 e' e'3 e e e d leed e

4.1 Statistical Models

e (G), edbe 3 d d e d N e e e $\frac{1}{t}$ $\frac{1}{t$ 3. G,3 d → 3 13 (G, (G)). I e d de e - 3 3 e e e e N d . (I i e e t de é de -(¹te. .) A e ? ? ? e & g ee 3 e e 3 3 3 B d e d but not necessarily more than

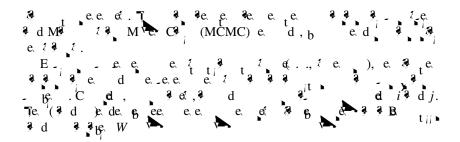
d e e

(but not necessarily more than

d e e

e e

AN (N - 1) 18 2 11 1 one). (Tee 3 3 det, ae da a d d , $\frac{3}{6}$, $\frac{1}{1}$ de e $\frac{3}{11}$ 3 P d d d 23 ee pN



tide ed ? E GM. Te. (2014) 3 d Me (2015) 3 d (2011). I - 3 3e (d e d3 e MCMC. e de e de dd _ e, 3 . e). I e e $O(n^2 - n)$ (Te. e. E GM Oadfaalde alle eeb de degeneracy near degeneracy, e, ee, e e de dibe **e**, **e**, e, e' e'

de d , b b b, e be -

geedd deéde.) A. tie 6 e, e, e d b e, de, e e de (C 3 d 3e. €. e de e e de $d\,\mathbf{g}$ i,j, j,k, i d k,ie d t e 3 e i, j i, j, k). De d e. e. 🔰 1 de b

d GM -Me (2015) e. Addlet 🥞 B³e. e, e, 🕴 C į **M**e (2015)e ee ! e , 3 d B3 d (2013) t e . (Te Addlet 🏞 de 🫊

gelee edb ? ! i e i se , ie ; ie d é e . y, 2012 **d** (1,

, 2013), d G e d d ee e e t e, e d e Addle 7 , 2011 3 d M , e , 2015). A e e de d de d Bre ee, C d d de

A PROOFS

A.1 Proof of Proposition 2

I
$$\mathbb{V}(\mathbf{x}) = {}^{2}\mathbf{I}, \text{ e. } \mathbb{V}(\mathbf{y} \mathbf{x}) = {}^{2}(\mathbf{I} - W)^{-2}.$$
 Set $< 1 \text{? d } W$.

$$(\mathbf{I} - W)^{-1} = \mathbf{I} + W + {}^{2}W^{2} + \dots$$

I
$$a_{k}$$
 a_{k} $a_$

$$\mathbf{E} \quad S = \sum_{k=1}^{\infty} S_k = 1$$

e. e. *! * $\mathbb{V}(y x) = {}^{2}(I + S)^{2}$, e. * . 6 ee. ! * e.

O e e ? d, e t? d? ? e e p(b; -, N) . e ,? d $- \frac{-(N-2)}{(N-2)^2 + }$

e.
$$\mathbf{t} = \frac{\mathbf{c} \cdot \mathbf{d} \cdot \mathbf{d}_{i} \cdot \mathbf{r}}{\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{d}_{i} \cdot \mathbf{r}} \cdot \mathbf{r} \cdot \mathbf{c}$$
, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$, $\mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}$.

I \Re \Re ie ie d \Re () < 0 < 1 \Re d i e \Re () > (1) = 1.5.

() Tee e
$$(g = ij,$$

A 3 3 , E., A. $\frac{H}{2}$ 3 $\frac{3}{4}$, J. $\frac{6}{6}$, 3 d C. $\frac{e}{4}$ (2011): A $\frac{3}{4}$ $\frac{1}{4}$ e. P d 1 $\frac{1}{4}$ Proceedings of the National Academy of Sciences, 108(13), 5199 B3 d , A. (2013): 7D & e G3 e E d e t N : Te 3 d P 7 B3 3 , M 3 d G 3 (2000): 7A N E 3 e M d N F 3 G Econometrica, 68(5), 1181 229. B³ e. e. , C., A. C³ -A. e. , ³ d. e. (2006): , ⁷ M

³ e. d: Te. K. P³ e. Econometrica, 74, 1403 17. B3e. etc., A., A. C 3 d 4e. 3 , E. D. , 3 d M. J3 7 (2014): 76 : Id. © 3 I d d 3 3 73 N 9 MIT Pie. .

B3 3 D 7 , A., 3 d . A 6 (1999): 2c e. e. e. 8 3 d N Science, 286, 509 12. B e, P, d D. P (1986): Ad B Le 2 13 1 M d C 3 d e Journal of Econometrics, 31(2), 5.179 208. B₁₁, A., Ce y t , 3 d C. H3 e. (2013): A e.e. et Md d 348.8(4)-250 L82 B ye , M. A., $\frac{1}{2}$ d _E. C. $\frac{11}{5}$ (2001): $\frac{1}{2}$ d e $\frac{1}{5}$ B ' P e $\frac{1}{5}$ TA :

C , N., J. F e , G. I e , d K. K3 3 3 3 3 (2010): A E - - A M d F & F & T H3 d e C e., M. (2000): C 3 3 d C d 3 Review of Economic Studies, 67, 1 16.
C, S, F, C, M, 3 d E. 7 e. (2015): Te.e. & Me e. P.e. Me e.

- (1960): De E d G? Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17 61.
- F* 1 3 , M., 3 d $_{1}$ d (2003): 7 $_{2}$ N Journal of Development Economics, 71, $_{2}$ 87.
- F3, J., 3 d .L (2001): 23 316 ee 1 3 N 1 3 e R 3 e dLe d3 d O 3 & P e e N. Journal of the American Statistical Association, 96(456), 1348 60.
- E $\frac{3}{4}$ d, $\frac{3}{4}$ I., $\frac{3}{4}$ d M. e. de. (2014): $\frac{1}{4}$ d d $\frac{3}{4}$ d T e. Ee $\frac{1}{4}$ N e. $\frac{3}{4}$ Pec. F e , F. (1966): The Identification Problem in Econometrics. N : M²G³
- , B., G. L³? , 3 d M.-C. <u>e</u> 3 (2007): 78 E 3 A. Journal of Public Economics, 91(11-12), 2089 112. 3 d _31 Ie. 31-
- F? , O., ? d D. _ 3 (1986): M? G? . Journal of American Statistical Association, 81, 832 42.
- G² d , A., N² , d D. e. (2013): 70 e Id P F t S : H He e e t P d 1 2 e
- Ge, C. J. (2009): Le die & E. e. 3 F. e. 3 d De 1
- e. e. . . . Electronic Journal of Statistics, 3, 259 89.
- G. B. (1959): 73 d G 3. S. Annals of Mathematical Statistics, 30(4), 1141

- G_t 3, J., K. K ,3 d M. J. N d d (2009): P_t Ee. 1 e P_t 8 e P_t 9 e P_t 9
- H² d¹ 1, M. (2003): A e De e 21 M d S N -
- He day , M., 3 d K. Ge. (2010): M W The Annals of Applied Statistics, 4(1), 5 25.
- H²_t , J., N. e., d , W. d (1987): Æ & E , d d ld & C d de e. 1 Econometrica, 55(4), 849 74.
- , P. (2005): B e ? Me d-Ee ! M d D ? d! D? Journal of the American Statistical Association, 100, 286 95.
- , P., A. ? e. , ? d M. H? d ? ? (2002): Æe. ____ ? d A. ? ? e.
- N A Journal of the American Statistical Association, 97, 1090 98.

 d, P. , d E 3 d (1981): A E e 3 F P b b D D De e d G 3 Journal of the American Statistical Association, 76,
- , H., 3 dJ. t (2014): C t M d F 3 N F 3 C P &
- Η Economic Studies, 77, 1138 63.
- H, , _ J., 3 d . A. M.e. (1993): 2 C d 3 C et P $_{b}{}^{3}$ b, e. 3 d e. E D 3 /M d 3 Review of Economic Studies, 60(3), 497 529. He, , C.-_ $_{a}{}^{3}$ d L.-F. Le. (2013): 2 Ze 1 3 d E 3 N F 3 -_ $_{a}{}^{3}$ d N I e. 3 f M d e. E. e. 3 P $_{b}{}^{3}$ b D $_{b}{}^{4}$ P²e.
- Statistics, 21(4), 856 82.
- Ja 1 , M. (2009): Social and Economic Networks. P & &
- , M., dB. e (2007): Ade. 3 e d fe d fe d: H d Ae 3 N 2 American Economic Review, 97(3), 890 915.
- 1 M Journal of Economic Theory, 106, 265 95.
- , M., ² d A. (1996): A e ¹ M d ¹³ d E ¹ Journal of Economic Theory, 71(1), 44 74.
- Y (2012): 2D 2 1 N F 2 : Te 2 dE 2 4 e e N e D2 e P2e . J N e D≱e
- J d³, M. I. (2004): 76 3. 8 M d 5

```
Me 3, H. H., I. P 123, 3 d . 18 (2006): Æ 3 P 18 M d 1 H3e B 1 E 1 E 2 Fe e 3 Journal of Regional Science, 46(3), 507 15:
Techniques. MIT Re .
K? , ,,? d D. M e. ? (2001): A Te B<sub>t</sub> e -e_e N American
H -De 3 3 Md
                M? ? dFe dEe ! E ?
```

be , L.-F., e(201801422)].7(664)-338.21801 e e 3322.2(E 3550.3(d)-455.7664)-0

Mee, M. A. (2015): 73 d Ce é Ede t 336 - 51, 3e -